A Multimoment Finite-Volume Shallow-Water Model on the Yin–Yang Overset Spherical Grid
نویسندگان
چکیده
A numerical model for shallow-water equations has been built and tested on the Yin–Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average (VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In the present model, the PV is computed by the semi-implicit semi-Lagrangian formulation, whereas the VIA is predicted in time via a flux-based finite-volume method and is numerically conserved on each component grid. The concept of including an extra moment (i.e., the volume-integrated value) to enforce the numerical conservativeness provides a general methodology and applies to the existing semi-implicit semi-Lagrangian formulations. Based on both VIA and PV, the high-order interpolation reconstruction can only be done over a single grid cell, which then minimizes the overlapping zone between the Yin and Yang components and effectively reduces the numerical errors introduced in the interpolation required to communicate the data between the two components. The present model completely gets around the singularity and grid convergence in the polar regions of the conventional longitude–latitude grid. Being an issue demanding further investigation, the high-order interpolation across the overlapping region of the Yin–Yang grid in the current model does not rigorously guarantee the numerical conservativeness. Nevertheless, these numerical tests show that the global conservation error in the present model is negligibly small. The model has competitive accuracy and efficiency.
منابع مشابه
Geodynamo and mantle convection simulations on the Earth Simulator using the Yin–Yang grid
We have developed finite difference codes based on the Yin-Yang grid for the geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is a kind of spherical overset grid that is composed of two identical component grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid enables us to develop highly optimized simulation codes on massively parallel superc...
متن کاملDevelopment of Numerical Methods for Geodynamo and Mantle Convection Simulations
2. Development of New Spherical Grid: Yin-Yang Grid Since the finite difference method enables us to make highly optimized programs for massively parallel computers, we exploit the possibility of the finite difference method for simulations in spherical shell geometry with radius r (ri ≤ r ≤ ro), colatitude θ (0 ≤ θ ≤ π), and longitude φ (0 ≤ φ < 2π). Because there is no grid mesh that is ortho...
متن کاملApplication of the Yin-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell
A new numerical finite difference code has been developed to solve a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell. A kind of the overset (Chimera) grid named “YinYang grid” is used for the spatial discretization. The grid naturally avoids the pole problems which are inevitable in the latitude-longitude grids. The code is applied to...
متن کاملOptimized Schwarz methods in spherical geometry with an overset grid system
In recent years, much attention has been given to domain decomposition methods for solving linear elliptic problems that are based on a partitioning of the domain of the physical problem. More recently, a new class of Schwarz methods known as optimized Schwarz methods was introduced to improve the performance of the classical Schwarz methods. In this paper, we investigate the performance of thi...
متن کاملDissection of a Sphere and Yin-Yang Grids
A geometrical dissection that divides a spherical surface into two identical pieces is considered. When the piece is symmetric in two perpendicular directions, the two pieces are called yin and yang and the dissection is yin-yang dissection of a sphere. The yin and yang are mapped each other by a rotation M on the sphere where M2 = 1. Therefore, the yin’s landscape viewed from yang is exactly t...
متن کامل